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Introduction

In this course we hope to introduce some of the basic ideas and applications behind the reasonable
new field of mathematics of non-commutative geometry. We aim to do this in a way so that
undergraduates can approach the subject without feeling overwhelmed by the scope of the subject.

1 Lecture 1

1.1 Topology

Throughout the semester we will add the necessary topological definitions required in order to
prove the required results. For the interested reader, they are refered to cite for a more detailed
introduction to the topic of topology

Definition 1.1: A topology

Given a set X, a topology, 7 on X is a collection of subsets of X such that the following
rules hold:

(i) The empty set, ) € 7, and X € 7.
(11) If Ul,UQ erTthen U NUy €T

(iii) If {U; € 7;1 € I}, where I can be any indexing set, then |J U; € 7
i€l
We call the pair (X, 7) a topological space, however for the sake of brevity we often denote
a topological space as simply X. The elements of X are called the points of the space. The
elements of 7 are the open sets of the space and are said to be open in (X, 7).

Remark 1. Tt can be seen via induction that any finite intersection of open sets is also open. Also,
notice that in the third condition, the indexing set can be infinite or finite, in fact, it can even be
uncountably infinite.

Example 1. Let X be a set. The set 7 = 2%, i.e. the set of all subsets of X, often referred to as
the power set, is a topology on X . This topology is referred to as the discrete topology.

Example 2. Let X be a set. The set 7 = {0, X} is a topology on X and is referred to as the
trivial topology.

Definition 1.2: Continuity

Let X and Y be topological spaces. We say a function f : X — Y is continuous if for every
open set U CY, f~}(U) C X is open in X.




Remark 2. Note that the pre-image f~'(U) = {z € X; f(x) € U} is well defined regardless of
whether f is invertible or not.

Example 3. Let f : X — Y where X is a topological space with discrete topology, and Y is an
arbitrary topological space. Then the all functions must be continuous.

1.2 Algebra

Definition 1.3: An algebra

An algebra A is a vector space V, over a field F, with a bilinear product (a,b) € ¥V x V
ab € V such that:
(ab)c = a(bc), Va,b,c € A (Associativity)

We say that the algebra is unital if there exists 1 € A such that 1-a =a-1=a for all a € A.
We also say that an algebra is commutative if ab = ba,Va,b € V and non-commutative if this
condition is not satisfied.

\. J

Remark 3. Actually an algebra can also be non-associative, but we are not concerned with this
case for the purpose of our work.

Example 4. Let M, (C) be the space of n x n matrices with complex entries. This space is a unital
non-commutative algebra with algebra operators as the usual matriz operations.

Definition 1.4: Commutativity

Let A be an algebra over C. An involution is a linear map * : A — A such that:
(i) (a*)*=a, VYae A
(i) (ab)* =b*a*, Va,be A

(iii) (a)*=aa*, a€Cac A

We refer to an algebra with an involution as a *-algebra.

Definition 1.5: Algebra homomorphism

Let A and B be x-algebras. An algebra x-homomorphism between x-algebras A and B, is a
linear map ¢ : A — B such that:

(i) ¢(ab) = é(a)p(b)
(i) ¢(a*) = ¢(a)*

\. J

Remark 4. Notice here that we explicitly said algebra x-homomorphism. We can also have group
homomorphisms, algebra homomorphisms and many more. A homomorphism can be thought of
as a structure preserving map, with respect to the structure found on the space.

Example 5. M, (C) with operations defined above, and involution defined as complex conjugate
transpose, is a x-algebra.



Definition 1.6: Algebra isomorphism

Let ¢ be an algebra s-homomorphism between x-algebras A and B. We say that A is
isomorphic to B, denoted by A ~ B, if ¢ is invertible.

Remark 5. Once again, the notion of isomorphism extends to many mathematical structures. It
is simply and invertible isomorphism.

Definition 1.7: Matrix algebra

We say A is a complex matrix algebra if:

N
A=EPM,(C), nieN

i=1

with involution defined as conjugation transpose and the algebra structures defined as the
usual product and additions on matrices.

1.3 Finite Commutative Geometry

In order to make sense of "non-commutativity” in geometry, we require a correlation between
algebras and geometry. For now, we will work within the framework of finite geometries/algebras
and extend to the full theory later.

Proposition 1.1

Let X be a finite topological space with discrete topology. Then the space of continuous func-
tions, f : X — C, labelled by C'(X), is a commutative matrix algebra, up to isomorphism,
with products defined via the following relations:

(i) Af+9)(x) =Af(z)+g(x), Vf,geC(X)Vre X VAeC
(i) (fo)() = f(@)g(x), Vf.g€C(X),VzeX
(iii) f*(z) = f(z), Vf,ge C(X)Vze X

Proof. As X has discrete topology, it is clear that all functions from X to C are continuous. Now,
define ¢ : C(X) — CV as:

f(N)
where i € {1,..., N} labels the points in X and N = | X| € N. It is clear that ¢ is a homomorphism

between C'(X) and CV. To show it is an isomorphism, we must simply show the ¢ is both injective
and surjective. For injective, suppose that ¢(f) = ¢(g) with f,g € C(X). Then, f(i) = g(i) for



all i € {1,..., N}. Thus we have that f = g. For surjective, take:

U1

UN

As all functions are continuous, pick the function f such that f(i) = v; for each ¢ € {1,...,N}.
So, C(X)~CN ~C@---@C. Thus C(X) is isomorphic to a commutative matrix algebra. [

N times

This is an important result. We have shown that given a finite topological space, we can construct
an algebra (x-algebra), unique up to the cardinality of X. Shown figuratively,

Finite Topological Spaces — Commutative Matrix Algebras

Unfortunately, this is relatively useless in generalising the notions introduced in differential geom-
etry/topology. In order to do this, we must construct a reverse arrow. In other words, can one
construct a finite topological space, X, from an arbitrary matrix algebra, A, where A ~ C'(X).
This is obviously not true as matrix algebras are generally not commutative and C'(X) is commu-
tative. There are two ways of resolving this:

(1)Restrict ourselves to commutative (diagonal) matrix algebras.

(2)Allow a new notion of “isomorphism” so that A can be "isomorphic” to C'(X).

Out of these two options, option (2) is the most interesting to lead to an extension of ordinary
topology. However, laying out the methods needed in option (1) will give us a starting point in
order to understand the extension.

1.4 Exercises

Exercise 1: Show that ¢ : X1 — Xy is an injective(surjective) map of finite spaces if and only if
¢* : C(Xy) — C(X)) is surjective(injective).

Exercise 2: FExplain the implications of the above exercise with respect to todays lecture. Hint:
Think about what this implies with regards to uniqueness in proposition 1.15.

2 Lecture 2

Aim of lecture is to construct the following reverse arrow:
Finite Topological Spaces «— Commutative Matrix Algebras

In order to do this, we will require a few technical definitions.



2.1 Finite Hilbert Spaces and Linear Operators

Definition 2.1: Inner product

Let V be a vector space over a field F. An inner product on V is a map (-,-) : V. x V = F
such that:

(i) (v,u) = (u,v) for v,u € V
(i) (aw,u) = a(v,u) and (v + u,w) = (v,w) + (u,w) for a € F,u,v,w €V

(iii) (v,v) >0, veV and (v,v) =0if v =0

We refer to the pair (V, (-,)) as a inner product space.

Definition 2.2: Finite dimensional inner product space

Let H be a finite dimensional inner product space. We will refer to this space as a finite
Hilbert space.

Remark 6. Strictly speaking, the above definition requires a proof. For now, we will not prove this
statement as it is not completely enlightening to this part of the course. We will however prove
this result later when working with general infinite dimensional vector spaces and have a more
rigorous definition of a Hilbert Space.

Definition 2.3: An operator

Let U and V be vector spaces over a field F. We say an operator L : U — V), is linear if

Llau+u') = aL(u)+ L(u') Yu,u' eUd,a €F

Remark 7. We denote the space of linear maps from U to V by L(U,V). If we write L(U) it is
assumed to mean L(U,U).

Remark 8. Note that linear maps are just the special case of homomorphisms when applied to
vector spaces.

2.2 Necessary Proofs

Proposition 2.1

Let A be a commutative matrix algebra. Then A ~ C¥ for some N € N

Proof. Suppose A is a commutative matrix algebra. Then a;b; = b;a; for each a;,b; € M, (C),
with ¢ € {1,..., N'}. This implies that each a; € M,,(C) is diagonal and thus:

i

M, (C)~Ca®---&C
N——

n; times



Hence,

A~C@---aC
——

Y, n; times

[

Defining >, n; = N we arrive at A ~ CV.

2.3 Representation Theory

Definition 2.4: Invariant subspace

Let L € L(H), then we say that V' C H is an invariant subspace of H, if for all v € V,
LveV.

Definition 2.5: Representation

Let A be a finite algebra. A x-algebra representation is a pair (H, ) where 7 is a *-algebra
homomorphism 7 : A — L(H). We say that the representation (H, ) is irreducible if the
only invariant subspaces of m(A) are H and {0}. If not, we say the representation is reducible

Example 6. Example of representations

Lemma 2.1: Shur’s Lemma

Given a representation (H,m) of a *-algebra A, with the commutant (A)" of 7(A) defined

as: m(A) = {T € L(H) : 7(a)T = Tr(a) for all a € A}

Then a representation (H,m) of A is irreducible if and only if the commutant 7(A)" of w(.A)
consists of multiples of the identity.

Proof. (=) Let (H,n) be an irreducible representation of 4. Then the only invariant subspaces
of H under 7(a) are {0} and H for all @ € A. Take and element 7" € w(.A)’, then the range of T is:

R(T) = {v € H;v =Tw for some w € H}
and the null space is given by:
N(T)={weH;Tw =0}

Now, let us look at the images of these sets under our irreducible representation of A. We see that
7(a)(R(T)) = n(a)T(H) = Tr(a)(H) € R(T),Va € A and 7(a)Tw = Tr(a)w = 0,Va € A, w €
N(T). This means that both N(T") and R(T) are invariant subspaces of H under 7(a). We now
have two options:

(i) R(T)={0} and N(T) =H

(ii) R(T)=H and N(T') = {0}

Looking at condition (i) we see this is satisfied by the trivial operator 7" = 0. Instead, let us
look at condition (ii). In this case, as H is finite, the operator T' is invertible. By the invertible
matrix theorem, there exists a non-zero value A € C such that Tv = Av. We then have that
det(T'— M%) = 0 and therefore T'— AIy is not-invertible = R(T—AIy) # H and N(T—\Iy) # {0}.
But, [T'— A3, m(a)] = 0,Va € A. Therefore, by the above argument, we have another two options:

7



(i) R(T — A3) = {0} and N(T — \3) = H
(i) R(T — A\z) = H and N(T — A3) = {0}

But we have shown that condition (ii) is not possible for this operator. Thus, T' = Aly.

(<) Let w(A) = {A; A € C}. Now, let V C H be an invariant subspace with respect to
m(a). We then decompose H as H = V & V+ where V+ = {v € H;(v,w) = Oforallw € V},
From (w(a)vt,v) = (v, 7(a*)v) = 0,Vv € Vvt € V| thus we have that V= is also an invariant
subspace.

Define the projection map proj,, : H — V. Then, (7(a) o proj,)(v) = w(a)(v) = (projy o
m(a))(v), Vv € V and (w(a) o proj,)(vt) = 0 = (proj, o m(a))(vt), Vot € V+. Therefore,
projy,, € m(A)" and proj,, = Al for some A € C. This means that V = H or V = {0}. Thus,
(H,7) is irreducible.

]

3 Lecture 3

We start by finishing the proof of Shur’s Lemma and then finish off the arrow:
Finite Topological Spaces «— Commutative Matrix Algebras

After this, we hope to generalise the notion to non-commutative matrix algebras.

3.1 Equivalence Classes

Definition 3.1: Equivalence relation
Let X be a set with binary relation ~. We say that ~ is an equivalence relation if:
(i) a~aforalaecX.
(ii)) @ ~ b if and only if b ~ a for all a,b € X.
(iii) If a ~ b and b ~ ¢ then a ~ ¢ for all a,b,c € X.

We call the set X with an equivalence relation ~ a setoid.

Definition 3.2: Unitary

Let U be a linear operator on H. We say that U is unitary it UU* = U*U = I4.

7
\.

Proposition 3.1

Given a x-algebra A, the relation, ~, defined by (Hy, ;) ~ (Hay,ms) if there exists a unitary
matrix, U : Hy — H, such that m(a) = U*me(a)U, Va € A, is an equivalence relation on
the set of representations of A.




Proof. (Reflectivity) Given a representation (Hy,m ), the identity map Iy, : H; — H; is clearly
unitary and 7y (a) = Iy, m (a)ly,, Ya € A. Thus, (Hy,m) ~ (Hy,m).

(Symmetry) Suppose (Hy,m ) ~ (Hs, my), then there exists a unitary matrix, U, such that 7 (a) =
U*my(a)U, Ya € A. Then, Umi(a)U* = UU*no(a)UU* = Iy,m(a)lg, = ma(a), Va € A, where I,
is the identity map on Hy. Define U = U* = U* = U, we have that m(a) = U*r(a)U, Va € A.
ThllS, (HQ,?TQ) ~ (Hl,ﬂ'l).

(Transitivity) Suppose (Hy,m) ~ (Ha, me) and (Hg, m9) ~ (Hs,m3). Then, there exists two unitary
matrices, U, U, with U : H; — Hy and U : Hy — Hs, such that m;(a) = U*ma(a)U and m(a) =
U*rs(a)U, Ya € A. We now have, my(a) = U*U*m3(a)UU. Now, it is the case that (UU)* = U*U*
so we simply need to show that UU is unitary. So, (UU)(U*U*) = U(UU*)U* = Ul U* = UU* =
Iy, and, (U*U*)(UU) = U*Iy,U = U*U = Iy,. Hence, (Hy,m;) ~ (Hs, m3).

]

Remark 9. If (Hy,m ) ~ (Ha,m) we say that the representations are unitarily equaivalent.

Proposition 3.2

If (Hy,m) is an irreducible representation of a x-algebra A, and (Hi,m) ~ (Ha,ms), then
(Hs, ) is also an irreducible representation of A.

Proof. Assume towards a contradiction that (Hj,ms) is not an irreducible representation of .A.
Then there exists a set V! C Hy such that m(a)(V') C V', Va € A. As (Hy,m) ~ (Ha, )
there exists a unitary matrix, U : H; — Hy, such that m(a) = U*m(a)U, Ya € A. Define
a new set V = U*(V') C H; which is neither H; nor {0}, due to U being invertible. Then,
m(a)(V) = (Urme(a))(V') Cc U*(V') C V, Va € A. Contradiction as (Hy,m) is irreducible. Thus,
(Hs, m) must also be irreducible. O

Definition 3.3: Equivalence class

Let X be a setoid. The we call the set [a] = {x € X;z ~ a} the equivalence class of a.

3.2 Structure Space and Finite Commutative Geometry

Definition 3.4

he structure space, fl, of a x-algebra A, is the set of equivalence classes of irreducible repre-
sentations of A. i.e.

A={[(H;,m)]:iel}

where (H;, ;) is an irreducible representation of A for each ¢ € I and I is some indexing set.

Proposition 3.3

Any irreducible representation of a commutative algebra A is 1-dimensional.




Proof. Let (H,m) be an irreducible representation of a commutative algebra A. Since A is com-
mutative, we have that w(a)m(b) = m(b)7(a),Va,b € A. Then, n(A) C ©'(A). Using 7(A\14) = Mg,
with A € C and 14 € A, and Schur’s Lemma, we have that 7'(A) C 7(A) = 7w(A) = {\g; A € C}.
Thus, any irreducible representation of a commutative algebra is 1-dimensional.

O

Proposition 3.4

Any irreducible representation of a commutative matrix algebra, A, is of the form:

’/TZ'CCNB()\l,...,)\N)*—))\Z'EC

Proof. By proposition 3.8, we have that all irreducible representations of A are of the form
m: A — C. Take a general representation:

(s
N
7~r( Z )\iel) = \je
i=1
for some j € {1,..., N} and {e;} a basis for C. Using that 7 is a homomorphism, we have that
e =1 O
j

Proposition 3.5

Let A be a commutative matrix algebra and (#, ;) be a collection of irreducible representa-
tions of A defined above. Then no two irreducible representations are unitarily equivalent.

Proof. Let m; and my be representations of A as defined in proposition 3.9. Recall, if m; is to be
unitarily equivalent to my there must exist a U : H — H such that 7 (a) = U*me(a)U,Va € A.
Suppose towards a contradiction such a operator exists. But, me(a) commutes with any linear
operators on H. Thus, 7 (a) = m(a) for all a € A. Contradiction. So we must have that no two
irreducible representations of A are unitarily equivalent. H

Definition 3.5: Coarseness/fineness

Let 7 and 7" be two topologies on a set X. If 7 C 7/ we say that 7 is coarser than 7 or
alternatively 7’ is finer than 7.

Theorem 3.1

Let A be a commutative matrix algebra. Then the structure space fl, with weak *-topology,
is isomorphic to a finite topological space X, with discrete topology, and A ~ C'(X).

So, what was the point in all this? Our goal was to successfully relate finite commutative matrix
algebras to finite topological spaces. Using propositions 2.7 and 2.8 it should be clear that the
structure space of A has the same cardinality as a finite set X = {1,..., N} and thus, A ~ X.
Notice that at this point we have not imposed any topological structure on the space X (in fact,

10



there is no structure on A and therefore X at all). So, the natural question to ask is can we
introduce a topology onto A? The answer, of course, is yes. But, what topology should be impose
on A? Well, in our initial construction of A we wished for A ~ C(X), where C(X) is the space
of continuous functions on X. But, to ensure that C'(X) also forms an algebra, with point-wise
structure, we have to impose the condition that every function on X to C is continuous. So, our
questions reduces to, what is the coarsest topology we can impose on X such that every element
of {f;f: X — C} is continuous. This is called the weak topology and in the finite case reduces
to the discrete topology on X as required. We will discuss the weak topology in more detail later.

3.3 Fields, Rings and Modules

Definition 3.6: Module

Let A be an algebra of a field K. A left A-module is a vector space F, over the field K, with
a bilinear product A X E 3 (a,e) — a-e € E such that:

(1) (ar1a9)-e=ay-(az-e) VYaj,as € AVe€E

(11) I4-e=-e, where I4 is the identity in A and e € F

4 Lecture 4

The aim of this lecture is to tie up the algebraic classification of the geometry of a finite number
of points. We have already seen how to translate to and from algebra and geometry when we
are talking about finite topological spaces. Now we want to look at something a bit more useful
in physical situations. That is the notion of a distance, and specifically how can we describe
algebraically the distance between points in our finite topological spaces.

4.1 Finite Metric Spaces

Definition 4.1: Metric

Let X be a set. A metric on X is a map d: X x X — R such that:
(i) d(z,y)=0if x =y
(ii) d(z,y) =d(y,z) for all z,y € X
(iii) d(z,z) <d(x,y) +d(y,z) for all z,y,z € X

We refer to the pair (X, d) as a metric space. Like we did with topological spaces, we will
often denote the pair as simply X.

We think of the map d(z,y) as the distance between the points z and y in the set. It can be
shown by the above axioms that the metric is always positive.

11



Definition 4.2: Balls

Let X be a metric space. We define the set B(c) = {z € X; d(c,z) < ¢,c € X,e > 0} as
the open ball with centre ¢ and radius e.

Proposition 4.1

Let X be a metric space. Then the set:
14 = {U C X;for all x € U, there exists € > 0 such that B.(z) C U}.

is a topology on X. We call the topology inherited from a metric the metric topology.

[

Proof. Will fill this out later

It is worth noting that not all topologies are metric topologies. In other words, not all topologies
can be realised from distance functions on the space. This is exactly the reason why one first intro-
duces the notion of open sets without introducing the distance function as it is done in real analysis.

For a finite discrete space, a metric is described by a collection of real non-negative numbers,
{di;}ijex. The following proposition tells us exactly how to algebraically encode this data in the
setting of noncommutative geometry (despite still being commutative).

4.2 Finite Dirac Operator

A useful notion for the following statement is that of a norm and specifically that of an operator
norm, which are used fairly commonly throughout modern mathematics. General definition of a
norm

Definition 4.3: Operator # 2

Let A: V — W be an operator between two normed vector spaces then the operator norm
is defined as ||A]|? = sup{(Av, Av) s.t (v,v) <1}
veH

Theorem 4.1

Let d;; be a metric on the space X of N points and set A = CV with elements a = (a(i))Y,

so that A = X. Then there exists a representation 7: A — L(H) on a finite dimensional
inner product space H and there exists a symmetric operator D: H — H such that

dij = sup{la(i) — a(j)| = [[D,m(a)]| <1}

acA

Proof. The tricky part is to show that

D, w(@)| = max{ - la(k) - a(D)]} (

~—

and once this is done the proof is more straight forward. So assuming it to be true then the
condition ||[D,7(a)]|] <1 is just maxk¢l{dim|a(k) —a(l)|} < 1. So we have that d%l|a(k) —a(l)] <1

12



for any k,[. Specifically |a(k) — a(l)| < di;, and taking the supremum of this we get the condition
that

sup{la(i) — a(7)] - [I[D, 7]l < 1} < dj

acA
We then have to show that sup,c,{|a(i) — a(j)| : ||[D,7]]| < } > d,; and thus we have equality.
To show this we fix i, 7 and take a € A to be such that a(k) = d;. Then we have that

) —a(g)| = | diu —dij| = di;
|a(i) — a(j)| = | il = di;

=0

so that |a( ) —all)] = 4~ Ldp — dy| < |d’“l| < 1, where the inequality arises by property 4 of a
metric. So now all that is left to show is that Eq (1] . is true, which we will now do using induction.
Let N = 2 so that H = C? then let 7 and D take the following forms:

- (8 ) i)

So we then have that ||[D,w(a)]|| = (di2)"|a(1) — a(2)], where the norm is defined as ||A|* =
sup,eg{(Av, Av) : (v,v) < 1}. So now we have proved the equality holds for N = 2 assume
it holds for an arbitrary N and we want to show it also holds for N 4+ 1. So assume we have
representation my of CV onto an inner product space Hy and a symmetric operator Dy. And

define

N

Hyi = HNGB@HJZQ

=1

where Hi, = C?. We then use the N = 2 case as motivation for our representation:

mne(a(1),a(2), ... a(N+1)) == WN(a(l),...a(N))@<&(01) a(N0+ 1))@<a(02) a(N0+ 1))@__'@(01((])\0

and let D be the following:

1 0 1) 1 (0 1)
D =DnPd — S — )
A M di vy (1 0 dviveny \1 0

Thus we need to look at [Dy1,my+1(a)] and its norm:

[Dns1, vy1(a)] = [Dn, my(a)] 2)
1 0 a(N +1) —a(l)
© di(n+1) <a(1) —a(N+1) 0 ) ®... )
! 0 a(N +1) - a(N)
N dN(N+1) <G(N) —a(N+1) 0 > (4)

If we take a vector v in H then we have:

(D41, Tn1(0)]v, [Dy g, Ty (a)]v) = > di2|a(i) = a(j)*(v}; +v}) ()

i<je{l,2, .N+1}

13
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where v;; corresponds to the terms in between points 7, 7. Now we need to show that the
supremum of this inner product with respects to vectors v such that (v,v) < 1 is precisely given
by the right hand side of . To do we factor out of the sum the maximum so that:

1 , , 1

> 2 la() —a(f)[*v}; = Iggf{ ak) —aPY Dy (6)
i£je{1,2, .N+1} i<je{1,2,...,N+1}

where the coefficient a;; <1 for all 4, 7. Now utilising the definition of the operator norm we have

that:

1
||[DN+1,7TN+1(CL)]”2 _ Sup{rggx{ |CL( ) a(l)|2} Z O-/ij'UZ?j (7)
vEH i<je{1,2,..,N+1}

= max{ zlalk) — a()Pysup(3 o (®)

k#l
7 1<j

As a;; <1 for all 4, j, we have that the sum is less than or equal to (v,v) < 1 and therefore the
supremum is that it is equal to one. So we have the following;:

D, ey @) = ma - la(k) - a(D)

5 Lecture 5

5.1 Non-finite Stuff

Aim to introduce people to the ideas of spin geometry and aim to describe the real spectral triple
for a Riemannian spin manifold. Where to begin? Begin at the beginning of course!

A fundamental object we require is that of a manifold. Many of the structures we can layer on
top of a manifold are highly useful in physics, and are basically applicable in every area. Such as
string theory, quantum field theory, condensed matter physics, cosmology. The list is endless so
its worth recapping what we need. We are going to work with smooth manifolds, however many
results hold for less regular manifolds. But we’re lazy, and don’t want to think about whether we
have sufficient regularity. I only know how to define a top manifold, then a differential structure
etc. Is there a straight way to get to smooth? I guess not but thought i’d ask

Definition 5.1: Manifold

A topological manifold is a topological space M, that is:

1. Hausdorff: Vx,y € M we can find open sets U,V , such that x € U, y € V and
Uunv =40.

2. Second countable: There exists a countable basis of open sets in the topology.

3. Locally Fuclidean: For every point x € M there exists a neighbourhood, U such that
there is a homeomorphism, ¢ : U — V C R”, for some fixed natural number n.

In order to do calculus we need to add on some extra structure. Namely a smooth structure.
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Definition 5.2: Smoothness

A smooth structure on a topological manifold is a collection of pairs {(U,, ¢,)}, which satisfy
the following

1. The U, are open sets that cover the manifold. (|, U, = M)
2. For each a, we have that ¢, : U, — R" is a homeomorphism.

3. The transitions functions ¢, = ¢y 0 ¢, : ¢, (UNV) — ¢(U NV) are smooth in the
usual sense as a map from R” to itself.

We call ¢, charts and the collection {(U,, ¢,)} an atlas.

Could do with a diagram, but will get around to that later A manifold with a smooth structure
is called a smooth manifold. Let C*(M) = {f: M — R|f o ¢~! is smooth V charts ¢} be known
as the algebra of smooth functions over a manifold. Where the operations needed to make it an
algebra are defined pointwise. We will now describe the Tangent bundle on a manifold and then
what a fibre bundle is.

Definition 5.3: Derivations

derivation at the point x € M is a linear map D : C*°(M) — R that has the following
property at each point on the manifold:

D(fg) = D(f) - g(x) + f(x) - D(g)

Definition 5.4: Tangent Space

Given a point on a manifold M we can define the tangent space at that point as the real vector
space of derivations, where we have the following operations: (Dy+ Ds)(f) = D1(f)+ D2(f)
and (AD)(f) = AD(f) for A € R. We will denote the tangent space in the usual way as
T.(M).

The notion of a tangent bundle is now a way to stitch together the tangent spaces at each
point. We will define a more general bundle structure and show where tangent bundles fit into
that framework. However it should be said that a tangent bundle always exists for a smooth
manifold, and does not rely on any extra structure, such as metrics.

Definition 5.5: Tangle Bundle

Given a smooth manifold M, the tangent bundle denoted T'M, is defined as a set TM =
Uyens oM = U ep{z} X T M combined with the map 7: TM — M defined as a projection
onto the first component.

You can think of elements of the tangent bundle as being (x,v) where x is a point on the
manifold and v is an element of T, M. The set T'M inherits a topology from M, and thus is a
topological space and it turns out to also be a manifold. But I'm not going to show this, there
is a lot of literature on the tangent bundle and other bundles that work through all the details.
However, it is worth mentioning that the tangent bundle is an example of a vector bundle over a
manifold. And to describe bundles of manifolds the most useful definition is that of a fibre bundle
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which is included for use later.

Definition 5.6: Fibre bundle

A fibre bundle is a structure (E, M, F, f), where E, M, F are all topological spaces and
f: E — M is a continuous surjection that satisfies the following properties: Vo € E there
exists a neighbourhood U of f(z) € M such that there exists a homeomorphism ¢ : f~1(U) —
U x F which, when composed with projection onto the first component, agrees with f.

The condition for f can be summarised in the requiring that the following diagram commutes:

FUU) —2— S UxF
\ A)l

To proceed in our description of spaces by algebras we are going to need some differential
geometry that is probably unfamiliar. Namely the notion of a spin bundle. Once we have all
the notions of a spin bundle we can then construct a real spectral triple for a Riemannian spin
manifold.

Need metric tensor and notion of Riemannian

6 Lecture 6

In my half of the lectures, we will be covering the topic of C*-algebras. This can be encased into
the larger and broader topic of operator algebras. Given that this part of the seminar may not be
as intuitive as the geometrical part, I will give a historical overview of why one should be interested
in operator algebras from a physics perspective.

6.1 History/Motivation

We start by asking the question, Why should one care about operator algebras? The obvious
answer for us is because we wish to generalise ordinary differential geometry to something non-
commutative in order to geometrically interpret quantum mechanical systems. Perhaps the most
natural case of operator algebras appearing is in the canonical quantisation used in quantum me-
chanics. Here is a quick overview of the construction used.

Classical Mechanics: We start by being given all the initial configurations (positions) of our parti-
cles. This is written mathematically as picking an open set U € RY with elements of U being the
positions of the particles. One then constructs the contangent bundle of this space, known as the
phase space, which has the property of being symplectic. With this property, one is then able to
construct a Poisson bracket on the phase space through the symplectic form. Via a Hamiltonian
function, one can then describe the dynamics of the system as a series of differential equations
given by the Hamiltonian flow (or just Hamiltons equations).

Quantum Mechanics (Dirac): With the above construction one then constructs a quantisations
linear map @ : C(M) — End(#) satisfying the following properties:

(Qf, Qql = ihQ 5.0y
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* Qoo = Qg0 Qs
® Qa;d) = I¢ and pr = _Zhaxw

In other words, one replaces to algebra of continuous functions on the phase space, with a non-
commutative algebra of bounded operators on a Hilbert space.

Theorem 6.1: Gelfand-Naimark Theorem

Let A be a commutative C*-algebra. Then the Gelfand transform:
[':A— Co(Q2A))

is an isometric *-isomorphism.

Theorem 6.2: Gelfand-Naimark-Segal Theorem

Let A be a C*-algebra. Then its universal representation is faithful.

These are the two main results we hope to prove throughout the next few weeks and are gen-
eralisations of the earlier theorems we proved in the finite case. In short, the first theorem allows
us to realise that the space of characters of an algebra (or maximal ideals, or pure states) can
be thought of as a (locally) compact, Hausdorff topological space. The second tells us that an
arbitrary C*-algebra can be realised as a sub-algebra of bounded operators on a Hilbert space.
Through this, one can then realise that the algebra A is a von-Neumann algebra. To the well
versed category theorist, this is must succinctly written as: There exists an invertible, contravari-
ant functor between the opposite category of C*-algebras and the category of locally compact,
Hausdorff topological spaces.

6.2 (C*-Algebras

Definition 6.1: Cauchy sequence

Let (x,)nen be a sequence in a metric space (X, d). We say that (2, ),en is a Cauchy sequence
if for all € > 0 there exists an N € N such that d(z,,z,,) < € for all n,m > N.

r
\

Definition 6.2: Completeness

We say that a metric space (X, d) is complete if every Cauchy sequence in (X, d) converges
to a point in X.

Example 7. An obvious example of a complete space, is the space R™ with the usual metric defined
on it.

Example 8. Perhaps more interesting is an example of a non-complete space. The open interval
(0,1) is not complete with respect to the metric inherited from R, same for Q.
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Definition 6.3: Inner product

Let V be a vector space over a field F. An inner product on V is a map (-,-) : V. xV — F
such that:

(i) (v,u) = (u,v) for v,u € V
(i) (av,u) = afv,u) and (v + u,w) = (v,w) + (u,w) for a« € F,u,v,w € V
(iii) (v,v) >0, veV and (v,v) =0iff v =0
We refer to the pair (V, (-,-)) as a inner product space. An inner product defines a metric

via the following relation d(v,u) = /(v — u,v — u).

Definition 6.4: Hilbert space

We refer to a complete inner product space as a Hilbert space.

Example 9. The example most used is the space of square integrable functions. This can be
formalised as the space of Lesbesque integrable functions. Alternatively, we can say it is a real
(complex) valued measurable function such that:

[ e < oc

With inner product:
(r9) = | Taala)da

The space L?(R) is a Hilbert space under this inner product.

Definition 6.5: Norm

A norm on a vector space V is amap || - || : V — [0, 00) such that:
(i) |jv||=0iff v=0

(i) ||\]| = |Al||v]] for A e F,v eV

(ii))  [Jo +ul| < [[o]] + [[ul], forv,u eV

We refer to the pair (V.|| - ||) as a normed space. A norm on V defines a metric via the
following relation, d(v,u) = ||v — ul||. A norm that only satisfies conditions (i) and (ii) is
refered to as a semi-norm.

| r

Definition 6.6: Banach space

We refer to a complete normed space as a Banach space.

Remark 10. From the above definitions it is clear that following statements are true. All Hilbert
Spaces are Banach Spaces and all Banach Spaces/Hilbert Spaces are metric spaces.
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Definition 6.7

A normed algebra is an algebra with an inner product defined on V such that:

[ladl| < llal[llbl],  Va,be A

Definition 6.8: Banach algebra

A complete normed algebra is referred to as a Banach algebra.

Definition 6.9: C*-algebra

A C*-algebra is a Banach algebra with an involution such that:

la*all = [lal[*, Va€.A

Proposition 6.1

Let E be a normed vector space and F' be a Banach space. Then the space of bounded
operators from E to F, denoted B(FE, ') is a Banach space.

Remark 11. By the above proposition, this tells us that the dual space of a vector space it always
a Banach space.

Definition 6.10: Operator # 3

Let (U, ||-|]1) and (V, ]| - ||2) be normed vector spaces over a field F. Then we say that the
operator L : U — V is bounded if there exists M > 0 such that ||Lul|ls < M]|Ju||; for all
uel.

Remark 12. We denote the space of bounded linear operators from normed space U to normed
space V by B(U, V).

Proposition 6.2

Let (U, ]| -]]1) and (V,]|| - ||2) be normed vector spaces over a field F. For L € B(U,V), we
claim that ||L||op, = inf{M > 0; ||Lul||s < M]||u||1} is a norm on the space B(U,V). We will
refer to the norm defined above as the operator norm.

Remark 13. With the above result it is clear that B(U/, V) is a normed vector space. We gave the
norm as the smallest M that satisfies the bounded condition. Loosely speaking, the the norm we
defined is the length of the operator as it measures (to best accuracy) the change in length of the
vectors. Maybe re-write this remark later!
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Proposition 6.3

The following norms on B(U, V) are equivalent:
(i) inf{M > 0; [[Lulls < M[ul],}
(if) sup{|[Lull; [|ul| <1}

(iif) sup{|[Lulf; [[u]] = 1}
(1v) sup{ 2L [u] £ 0}

with L € B{U,V) and u € U.

\. J

Remark 14. By the above proposition, all these norms are equivalent to the operator norm. We
will hence label any of these norms as the operator norm, and use the one that allows for the
simplest computations.

Theorem 6.3

Every finite dimensional normed space is a Banach space.

7 Lecture 7: Fibre bundles

Recall the definition of a fibre bundle (E, M, F, f). To define a smooth fibre bundle we require
the topological spaces E, M, F to be smooth manifolds and f a smooth surjection. With the
local trivialisation now being diffeomorphism. We will now look at different types of bundles that
commonly appear in physics.

7.1 Bundles with symmetry

Definition 7.1: Principal G-bundle

Fibre bundle with structure groups are a smooth fibre bundle (E, M, F, f) with local trivi-
alisations {(U;, ¢;)} and let G be a Lie group with a left action on F' denoted by p. For any
intersecting pair of open sets U; and U; there is a smooth map g¢;;: U; N U; — G such that
we have that

pjod;t: (UinU;)) x F— (U;NU;) x F (9)
(z,A) = (2, p(gi;(x)) ) (10)

for all (z,\) € (U; N U;) x F. We call the functions {g;;} the transition functions.

Now as Lie groups describe continuous symmetries we have a way to introduce the notion of a
symmetry of the fibres F'. A simple and common example of a fibre bundle with a structure group
is where the fibres are the group itself, F' = G. These are given a special name because of there
usefulness and they are called Principal G-bundles. Another type of bundle with structure group
G are the associated G-bundles. These are defined as follows:
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Definition 7.2: Associated bundles

Given a representation of a Lie group G on a vector space V', denoted by p: G — End(V).
Let us take £’ = (E x V) /G, which we will denote by E' = E XV and then (E', M, V, f,G)
is called the associative bundle of (E, M, F, f,G).

We can actually set up a correspondence between vector bundles and principal g-bundles.
Which we will describe below:

7.2 Constructing fibre bundles from local data

Let M be a smooth manifold and let & = {U,} be an open cover of M. Let F' be a smooth
manifold with a left action, p, by a Lie group G. Given a set of smooth transition functions
gi; - (U;NU;) — G such that on any non-empty intersection U;;,-U; N U; N Uy, we have that
gik(x) = gij(x)g;k(x) for all z € Uyj;. Then we can construct a fibre bunle (E, M, F, f) with
structure group G by taking

E=(|UsxF)/~

where (z,\) ~ (z, p(g;;(x))\) and by taking 7 to be projection onto the first entry, pry: U; X

7.3 Frame bundle

Given a vector bundles (E, M, V, f) we can define a principal g-bundle (GL(E), M, V, ) by taking
GI(FE), to be the set of framesﬂ of V. As any two frames are related by a unique invertible linear
transformation, which means that we can view GL(E), = GL(E,). Then GI(E,) are the fibre of

the fibre bundle (GL(E), M,GL(E),,n) constructed from local data by taking GL(E) = (], Ua X
GL(V))/ ~ as described in the previous section.

7.4 When are two bundles the same?

We can compare bundles and specifically say when they are equivalent to each by using a bundle
morphism.

Definition 7.3: Bundle morphism

A bundle morphism between two fibre bundles (£, M, F, f) and (E, MEF, f ) such that we
have a smooth map ©: E — E such that f o1 = f (or the following diagram commutes).
need commutative diagram.

LA frame at the point € M is an ordered basis for the fibre E,, which is a vector space
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8 Lecture 8

8.1 The Gelfand-Naimark Theorem

We start where we left off, with the algebraic aspects of NCG. Recall our efforts are to prove the
Gelfand -Naimark theorem, the corner stone of NCG.

Theorem 8.1: Gelfand-Naimark Theorem

Let A be a commutative C*-algebra. Then the Gelfand transform:
[':A— Cy(QA))

is an isometric *-isomorphism.

Example 10. Let S be a set. The set [°(S) is the set of all bounded complex functions on S.
This is a unital Banach algebra with norm ||f||c = sup,eg |f(2)].

Example 11. Let X be a locally compact Hausdorff space. The set of complex valued functions that
vanish at infinity denoted Co(X) form a Banach algebra (as they are a subset of the above example).
In fact, with the involution defined at complex conjugation, it is a C*-algebra. The algebra is unital
iff the topological space is compact. This is the guiding example for Gelfand-Naimark.

Definition 8.1: Spectrum

Let A be an algebra. Given an element a € A, we say that the spectrum of a is given by:
ola)={AeC:a— A4 ¢Inv(A)}

where Inv(A) are the invertible elements of A.

Example 12. The spectrum of the algebra M, C) is the eigenvalues of the matriz.

Example 13. Let X be a compact Hausdorff space and C(X) the space of continious functions
on X. The spectrum of f € C(X) is Spec(f) = Im(f) ={\ € C: f(x) = A}

Definition 8.2: Spectral radius

Let A be an algebra. We define the spectral radius of an element a € A as:

r(a) = sup |A|
A€o (a)

| r
\.

Theorem 8.2: Gelfand

If a is an element of a unital Banach algebra A, then the spectrum of a is non-empty.

Theorem 8.3: Gelfand-Mazur

If A is a unital Banach algebra in which every non-zero element is invertible, then A = 1,4C.
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Proof. Follows from Gelfand’s theorem. O

Definition 8.3: Character

A character ¥ on an algebra A is a non-trivial algebra homomorphism between A to C.
We denote the set of all characters by (A).

Definition 8.4

Let V be a vector space. We say the space of linear maps from V' to C is the dual space of
V. The space is denoted by V*.

Definition 8.5: Ideals

Let A be an algebra. We say that I C A, as a vector space, is a right (left) ideal if ab € I
forae Aandbel (bacl,bel,ac A). We call a left-right ideal simply an ideal.

Definition 8.6
We say that an ideal is proper, if I is not A.

Definition 8.7: Maximal ideal

An ideal is maximal if it is not contained in any other proper ideal.

r
\

Lemma 8.1

If I is a modular maximal ideal of a unital commutative algebra A, then A/[ is a field.
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Theorem 8.4

Let A be a unital commutative Banach algebra.
(i) 7(a) € o(a) for every 7 € Q(A) and every a € A
(ii) ||7]| =1 for all T € Q(A).

(iii) The set ©(A) is non-empty, and the map, 7 — Ker(7), defines a bijection from Q(A)
onto the set of maximal ideals of A.

Proof. (i) Follows from later theorem.

(ii)) By theorem 8.18, 7(a) € o(a) for each a € A. Thus, |7(a)] < r(a) < |lall.
Therefore, ||7|| < 1 and by the homomorphism property, 7(1) = 1. Thus, ||7|| = 1.

(iii) Let I = Ker(7) for some 7 € Q(A), 7 # 0 (exists as algebra is unital). This is
an proper ideal of A as 7(ab) = 7(a)7(b) = 0 where a € A,b € I, likewise for the right
action. Now, note that a — 7(a)14 € I for all a € A. Thus, our algebra can be decomposed
as A =14C + I, and hence [ is maximal. We must now show the above map is bijective.
(Injective) Let 71,79 € Q(A) and Ker(7;) = Ker(7z). Note now that 71(a — m2(a)l4) = 0 for
each a € A. Thus, 71 = 7.

(Surjective) We wish to show for any maximal ideal I C A, there exists 7 € Q(A) such that
I = Ker(7). So, suppose [ is a maximal ideal of A(the existence of these ideals follows from
Zorn’s Lemma and the fact that A is unital). Then, as A is unital, / is modular, and by
lemma 8.19, A/I is a field. Thus, by Gelfand-Mazur theorem, we can write the quotient
algebra as A/l = C(14 + I). This then implies that A = Cl4 + I. We now define the map
7: A — C such that 7(a + A14) = A. Therefore, we have shown the existence of a 7 € Q(A)
such that I =Ker(7). O]

Theorem 8.5

Let A be a commutative Banach algebra.

(i) If A is unital, then o(a) = {7(a) : 7 € Q(A)}

(ii) If A is non-unital, then o(a) = {7(a) : 7 € Q(A)} U {0}
Proof. (i) Let A € o(a). Then the ideal I = (a — \)A is proper, as 14 ¢ I. By theorem 8.20
(iii), I is contained in a maximal ideal Ker(7), with 7 € (A). This means that 7(a) = A for

some a € A, and thus o(a) C {7(a) : 7 € Q(A)}. It is clear that {r(a) : 7 € Q(A)} C o(a),
this follows from 7(7(a) — a) = 0, and therefore equality holds.

(ii) Exercise O
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Definition 8.8: Open ball topology

Let V' be a vector space and {p;}ics a family of semi-norms on V. Then the open ball at
each 7 is given by: .
Bi(u)={veV:pu—v)<rueV,r>0}

We refer to the topology generated by the set of open balls as the topology induced by {p;}icr

Definition 8.9: Weak x-topology

| V

(Weak #-topology) Let V' be a normed vector space. For each v € V' we define a family of
semi-norms on V* by:

po(v%) = [{v,v")]

v* € V*. The topology induced from this family of semi-norms if referred to as the weak
x-topology.

Proposition 8.1

The weak *-topology is Hausdorff.

Theorem 8.6: Banach—Alaoglu theorem

Let V be a normed vector space. The closed unit ball defined by:
B ={peV*:|pll <1} S V"

Then B* is compact with respect to the weak *-topology.

Definition 8.10: Character space

7
\.

From now on we endow take Q(A) to be endowed with the weak *-topology, and refer to the
total structure as the character space.

Theorem 8.7

If A is a commutative Banach algebra, then Q(A) is a locally compact Hausdorff space. If
A is unital, then 2(A) is compact.

\. J

Proof. Let us start with the non-unital case. By theorem 8.16 it follows that the set 2(A) U {0}
is contained in the closed unit ball of A*. By Banach—Alaoglu theorem it follows that the set is
compact. Thus, Q(A) is locally compact (see Alexandroff extension). The unital case follows by a
similar argument using theorem 8.16.

[

Definition 8.11: Gelfand Transform

Let A be a commutative Banach algebra for which Q(A) # (). We define the Gelfand
transform as the map a : Q(A) — C, 7 — 7(a). Note that a € Cy(2(A)). This follows from
the weak *-topology we endowed on Q(A).
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Theorem 8.8: Beurling

If a is an element of a unital Banach algebra A, then:

r(a) = inf [|a"||V" = lim ||a"||"/"
n>1 n—o0

Theorem 8.9: Gelfand Representation

Let A be a commutative Banach algebra and that Q(A) ¢ (). Then the map:

A= Co(QA)), ara

is a norm-decreasing homomorphism.

. J

Proof. If A is unital, by theorem 8.21 it follows that o(a) = a(€2(A)) and if non-unital, o(a) =
a(2(A)) U {0} for each a € A. Therefore, r(a) = ||a|| which tells us the map from a +— a, is
norm decreasing (follows from Beurling theorem). To see the homomorphism explicitly we show
the following:

(T(Aa +b)(1) = (Aa + b)T = 7(Aa + b) = A\r(a) + 7(b) = XaT + br = (AT(a) + T'(b))(7)

L(ab)(7) = abr = 7(ab) = 7(a)7(b) = (a7)(br) = (I'(a)7)(L'(D)7) = (I'(a)['(b))T

[

9 Lecture 9: Clifford algebras and spin.

So now we know some fibre bundle theory, the overall aim is to construct the spin bundle, which
is an associated vector bundle to the spin group. So we need to delve into what a spin group is.
Which leads us to clifford algebras. The first concrete link between noncommutative geometry and
the commutative world.

9.1 Clifford Algebras

Clifford algebras are a generalisation of the complex numbers. We can view the complex numbers
and geometrical operations of the plane. With complex conjugate being the reflection about the
x axis and rotations by multiplication of complex numbers with magnitude equal to one. Clifford
algebras generalise this to higher dimensions and for this reason they are sometimes referred to as
‘geometric algebras’ There construction seems a little contrived to begin with. But if you try to
convert everything into geometrical operations it makes the reasons for certain choices a bit more
apparent.
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Definition 9.1: Bilinear form

Let V' be a finite-dimensional vector space over a field R. A function B: V xV — R is a
bilinear form if it satisfies the following conditions:

B(z,y) = B(y,z) (11)
B(Ax +vy,z) = \B(x, z) + By, 2) (12)
B(z,u) =0VueV = =0 (13)

From a bilinear for we can construct a quadratic form @, by setting Q(z) = (x, x).

\. J

We can also go backwards from a quadratic form to a bilinear form by a process called polari-
sation. This is where B(z,y) = 5 (Q(z +y) — Q(z) — Q(y)). A key observation of a bilinear form
over a vector space is it’s signature. This is found by picking an orthonormal basis of the vector
space with respect to the form, {e;}! ;. Where n is the dimension of the vector space, and then
order the €}s in such a way so that the first p all have norm +1 and the last ¢ have norm —1, such
that n = p + ¢q. The signature of the space is then given by s = ¢ — p.

Example 14. The simplest example of a bilinear space is that of Fuclidean space R™, which consists
of the n-tuples of real numbers (x1,...,x,) together with the inner product

=1

Example 15. Another familiar example of a bilinear space is that of Minkowski space R(3,1),
which consists of the 4-tuples of real numbers (xq, ..., x3) together with the inner product

3
B(z,y) = —xoyo + Z T;Y;
i=1

This can in fact be extended to arbitrary signature and dimension, denoted RP?, with product

P q
B(z,y) = Z%yz - ijyj
i=1 j=1

We are now ready to define a Clifford algebra over a vector space V.
Definition 9.2: Clifford algebra

A Clifford algebra over the vector space V' with quadratic form @), is denoted by CI(V, Q)
and is the algebra generated by the product defined as z - z = Q(x).

If we take an orthonormal basis of V', we can express a familiar from physics relation between
their products:
€;€; -+ €;¢; = 26(65, 6]').

We can then extend this basis of V' to a basis of CI(V') by taking all the products of the vector
space basis elements and reordering them using the relation above.
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9.2 Modules over Clifford algebras

A module over an algebra is the generalisation of a vector space over a field. However, the main
differences are that algebras need not be commutative, so left and right actions are in general
distinct. Also there may exist zero divisors (xy = 0 wit x, y # 0), which causes linear independent
sets to be problematic to define. We will look at Clifford algebras over the vector space RP? with
the usual bilinear form (inner product). We will denote this Cliffor algebra as Cl,, .

Definition 9.3: Clifford module

A left module over the Clifford algebra Cl,,, is a vector space V' (over R) together with an
algebra morphism L: Cl,, — End(V). Le for each element a € Cl,,, there exists a linear
transformation L(a) of V such that:

L(ab+ ¢) = L(a)L(b) + L(c)

Ya,b,c € V. The operator L is called left multiplication. A similar definition exists for a
right module with a right multiplication, but now R(ab) = R(b)R(a). A vector space V,
that has both a left and right multiplication, so it is a left and right module, is called a Cl,, ;-
bimodule.

9.2.1 Pin and Spin

To tidy up the next section, we will introduce some notation. There are some operations one can
do on a Clifford algebra which have a geometrical meaning.

Definition 9.4

Given Cl(V), let a,b € CI(V) and = € V. We can then define the following operations
o The main antiautomorphism is denoted @ and is such that z = —z, and ab = ba.
» The operation called reversion is denoted a* such that z* = x and (ab)* = b*a*

o the main automorphism is denoted o’ and is such that 2’ = —z and (ab)’ = a'b’.

Now, a useful thing to know is that we can decompose a Clifford algebra into even and odd
parts. We do this by using the main automorphism. Any element a € CI(V') that maps to +a
is said to lie in the even part of the Clifford algebra and any element which maps to —a is said
to lie in the odd part of the Clifford algebra. Thus we can write the Clifford algebra as follows
Cl(V)=Cl" (V)@ Cl~ (V).

Now we can define the Pin and Spin groups.

Definition 9.5: Pin and spin

The Pin group of (V, @), denoted Pin(V') is the subgroup of CI(V') generated by all elements
v € V such that Q(v) = £1. The Spin group is the intersection of Pin(V') and CI* (V).

Not very enlightening so we will explain next time how they related to rotations.
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